视听产业如何做好转型服务?新奥特技术团队这样发力******
2022年2月4日,第二十四届冬季奥林匹克运动会在北京举行。期间,在北京、延庆、张家口三大赛区的15个比赛场馆以及主媒体中心,新奥特全面参与多个技术环节,并为中央广播电视总台、北京广播电视台、咪咕视频等媒体机构提供赛事转播技术服务。
在冬奥赛事场馆内,新奥特为15个场馆提供体育展示服务,负责提供体育展示控制区域设备的安装部署调测。为了确保设备性能与主媒体中心的相关系统性能相兼容,新奥特提供了实时多通道收录、实时慢动作编辑、实时慢动作播出回放、在线图文包装等技术支持。
在主媒体中心内,新奥特技术团队负责北京2022年冬奥会和冬残奥会组织委员会体育展示主控制作中心(MRC)的实时收录,以及后期制作。其中,在赛事收录部分,新奥特完成了所有场馆信号、景观信号等全部信号收录。
值得一提的是,在赛事转播服务中,新奥特石墨超高清视频图文展示平台,助力中央台8K频道、中央电视台体育频道(5、5+、奥运频道)、北京电视台新闻频道、北京电视台奥运频道、咪咕视频等全程精彩转播。
据了解,新奥特“石墨”(CDV Graphite)是视频图文在线展示与包装的技术平台与系列产品,具备4K在线包装功能和8K大屏展示功能。“石墨”秉承“更好地展示视频、图像和字幕”的设计目标,以大分辨率、高性能的特点,实现8K输出、24路高清视频文件回放、16路高清信号输入显示等突破性性能指标,弥补了国内外产品在超高分辨率输出、超多路视频回放与采集播放等方面性能的不足,填补了产品空白,可满足超清电视包装和大分辨率屏幕信息展示的需求。
“在8K制作领域,我们的产品完成了从可用到好用的转变。8K图文包装支持双路输入开窗,非线性编辑系统实现了原码与代理无缝切换、智能集群合成输出等功能,使得系统可用性和效率等得到了大幅提升。”新奥特相关负责人说。
“在传统视音频制作领域,最终的目标一定是基于IP化实现系统的全面IT化、虚拟化和云化。而在这些方面,我们还仅仅是起步,与国外的发展现状差距颇大。”谈及当下以及未来发展决策,新奥特相关负责人表示,将继续在8K超高清、云制作、远程制作等领域进一步深入探索,将更多的能力云化,且基于云原生结构重构现有技术、系统及业务,同时充分利用云端的资源和服务,构建分布式、高可靠的、随需使用的云端解决方案。(姚坤森)
竹子“变身”高透光电磁屏蔽材料******
竹材是一种常见的生物质材料,具有可持续性、生长速度快、资源丰富等优点,被广泛用于家具制造及家居装饰用材领域。但是,你见过透光竹材吗?它不仅透光还可以隔热、保温、屏蔽电磁,这样神奇的材料是怎么制成的呢?
近日,南京林业大学家居与工业设计学院吴燕教授领衔的课题组,通过一种简单高效的处理方式,将竹材转化为具有良好光学性能的透光原竹和透明竹片,同时保留了原竹天然形状和纤维素骨架结构。日前,相关研究论文发表于国际期刊《纳微快报》。
科技创新将竹材利用最大化,竹材逐渐作为木材、塑料、钢筋等材料的替代品被开发利用,形成了重组竹、竹编工艺品、竹纤维制品、竹碳制品等100多个系列上万个品种,竹材产品已经覆盖生产生活的各个领域。我国是世界竹材产品生产、贸易第一大国,2020年,全国竹产业产值近3200亿元。
随着人们对家居环境个性化装饰需求的日益增多,将竹材等环保材料转化为新型材料的研究越来越多,吴燕课题组的研究便是其中之一。
论文第一作者王晶介绍,透光竹材的制备主要分为两个步骤,第一步是去除发色基团,第二步是浸渍折射率与竹纤维素模板相同的聚合物。
由于竹材的孔隙率较低,竹材去除木质素和浸渍聚合物的时间比巴沙木、杨木等密度较小的木材要长,因此制备具有一定厚度的透光竹材是一项挑战。
该课题组选取5年生毛竹为原材料,将去青后的原竹浸泡在过氧化氢和乙酸混合溶液中,再利用简单的化学预处理脱除原竹中的木质素,木质素的去除会导致更多孔隙出现,有利于下一步的填充过程。最后向竹纤维素模板中填充折射率指数与其相匹配的树脂,再经过快速固化工艺,一款具有优异光学传输性能、抗拉伸性能、表面装饰性和美学价值的透光竹材便应运而生了。与其他不同聚合物浸渍方法制备的生物质透明样品相比,透光原竹固化时间非常短,因此显示出显著的快速制备加工潜力。
“此类将原竹直接加工成竹纤维素模板再合成透明材料的方法,将大大减少前期原料机械加工和后期原料成型的步骤,不仅减少了能耗,也减少石化资源的浪费。”吴燕说。同时,这个方法还可以用于处理其他高密度、低孔隙率的生物质材料。
据介绍,透光竹材的壁厚可达6.23毫米,透光率约60%,照度为1000勒克斯,吸水质量变化率小于4%,纵向抗拉强度达到46.40兆帕,表面性能为80.2HD(布氏硬度计测试出来的硬度单位)。
吴燕教授领衔的课题组将透光原竹与透明竹片、电磁屏蔽膜组成一款复合器件,整体结构类似于常见的蜂窝板,其中透光原竹充当核心骨架、透明竹片为面板、锡掺杂氧化铟薄膜为功能层。
经过研究发现,这款复合器件可表现出显著的隔热、保温性能以及电磁屏蔽性能,在家居与建筑装饰材料领域具有广阔前景。(记者 张 晔 通讯员 方彦蘅 姚会春)